Empirical likelihood for generalized linear models with longitudinal data
نویسندگان
چکیده
In this paper, empirical likelihood-based inference for longitudinal data within the framework of generalized linear model is investigated. The proposed procedure takes into account the within-subject correlation without involving direct estimation of nuisance parameters in the correlation matrix and retains optimal even if the working correlation structure is misspecified. The proposed approach yields more efficient estimators than conventional generalized estimating equations and achieves the same asymptotic variance as quadratic inference function based methods. Furthermore, hypothesis testing procedures are developed to test whether or not the model assumption is met and whether or not regression coefficients are significant. The finite sample performance of the proposed methods is evaluated through simulation studies. Application to the Ohio Children Wheeze Status data is also discussed.
منابع مشابه
Conditional Dependence in Longitudinal Data Analysis
Mixed models are widely used to analyze longitudinal data. In their conventional formulation as linear mixed models (LMMs) and generalized LMMs (GLMMs), a commonly indispensable assumption in settings involving longitudinal non-Gaussian data is that the longitudinal observations from subjects are conditionally independent, given subject-specific random effects. Although conventional Gaussian...
متن کاملParameter Estimation in Spatial Generalized Linear Mixed Models with Skew Gaussian Random Effects using Laplace Approximation
Spatial generalized linear mixed models are used commonly for modelling non-Gaussian discrete spatial responses. We present an algorithm for parameter estimation of the models using Laplace approximation of likelihood function. In these models, the spatial correlation structure of data is carried out by random effects or latent variables. In most spatial analysis, it is assumed that rando...
متن کاملQuadratic inference functions for partially linear single-index models with longitudinal data
AMS 2000 subject classifications: 62G05 62G10 62G20 Keywords: Bias correction Generalized likelihood ratio Longitudinal data Partially linear single-index models QIF a b s t r a c t In this paper, we consider the partially linear single-index models with longitudinal data. We propose the bias-corrected quadratic inference function (QIF) method to estimate the parameters in the model by accounti...
متن کاملRobust empirical likelihood inference for generalized partial linear models with longitudinal data
In most cases authors are permitted to post their version of the article (e.g. in Word or Tex form) to their personal website or institutional repository. Authors requiring further information regarding Elsevier's archiving and manuscript policies are encouraged to visit: AMS 2000 subject classification: 46N30 Keywords: B-spline Efficiency Empirical likelihood Generalized estimating equations G...
متن کاملWhich Methodology is Better for Combining Linear and Nonlinear Models for Time Series Forecasting?
Both theoretical and empirical findings have suggested that combining different models can be an effective way to improve the predictive performance of each individual model. It is especially occurred when the models in the ensemble are quite different. Hybrid techniques that decompose a time series into its linear and nonlinear components are one of the most important kinds of the hybrid model...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- J. Multivariate Analysis
دوره 114 شماره
صفحات -
تاریخ انتشار 2013